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The Propagation of Infinitesimal Disturbances 
in an Ultrarelativistic Gas According to the 
Method of Elementary Solutions 
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It has recently been shown that a linearized relativistic BGK model can be 
reduced, in the ultrarelativistic limit, to a system of three uncoupled transport 
equations for thermal, sound, and shear waves. The equation describing the 
propagation of thermal waves is the well-known one-speed neutron transport 
with isotropic scattering in the conservative case. In this paper the solution of 
the half-space problem for the equation describing the propagation of shear and 
sound waves is given according to Case's elementary solutions method. 
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1. I N T R O D U C T I O N  

The propagation of small-amplitude disturbances in a relativistic gas has 
been the subject of a number of recent investigationsJ 1 3l In particular, it 
has been shown in Ref. 1 that, according to relativistic kinetic theory, 
signals propagate at a speed less than the speed of light. Relativistic 
generalizations of the classical BGK model ~4/made an analytical treatment 
of the propagation of small-amplitude disturbances possible in complete 
analogy with the classical case. ~5) The analysis of the dispersion relation for 
thermal, shear, and sound waves in a relativistic gas has been presented in 
Ref. 2, where the gas was assumed to behave according to the kinetic model 
first proposed by Anderson and Witting. ~6) The one-dimensional, unsteady, 
linearized version of the same model has been considered in Ref. 3, where 
the proof is given that in the ultrarelativistic limit the model reduces to the 

t Dipartimento di Matematica del Politecnico di Milano, Milan, Italy. 

255 

0022-4715/87/0100-0255505.00/0 �9 1987 Plenum Publishing Corporation 
822/46/1-2-I 7 



256 Frezzotti 

following set of three uncoupled transport equations for thermal, shear, 
and sound waves, respectively: 

8Y 8Y 1 r+l 
8--7+/~-~x + Y = 2 J  1 

8W 8W 3~+1 
a - T + , T x +  w= j , 

 f\l 
8-7 + + z = 

Y(x,t,  g')d#' (la) 

(1-/~,2) W(x, t,l~')d#' (lb) 

3 ~+1 
Z(x, t, ~,') += ~ ! #'Z(x, t, S )  + '  (le) 

Z J 1 

In Eqs. (1), Y, W, and Z are functions related to the perturbation of the 
distribution function of the molecular velocities. (3) Equations (1) hold in 
the frame of reference at rest with respect to the unperturbed gas, x and t 
are normalized values of the space and time coordinate, respectively, and/~ 
is the normalized x component of the velocity. The first equation of system 
(1) is the well-known one-speed neutron transport equation with isotropie 
scattering in the conservative case. (7) The method of elementary solutions 
was developed by Case (6) to solve the steady transport equation 

8Y cf+X 
# ~ x  + Y = ~ J  1 Y(x,#')d#'  (2) 

which becomes the steady version of Eqs. (1) if c is set equal to one. Case's 
method can be extended to solve unsteady transport equations by 
introducing the Laplace transform of the unknown Y(x, t, #) with respect 
to the time variable and reducing the equation to a form similar to the 
steady one. (9'1~ This technique is adopted in the present work to solve the 
half-space problem for Eqs. (lb) and (lc). It is worth noticing that the 
same set of transport equations occurs in a completely different context, in 
the study of small-amplitude signals propagation in a degenerate Fermi 
fluid.! 11) This circumstance is not surprising, since, both in the case of an 
ultrarelativistic gas and in the case of a degenerate Fermi fluid, collisions 
affect only the velocity directions because all molecules have practically the 
same characteristic speed (the speed of light in the case of the relativistic 
gas and the Fermi speed in the gas of the degenerate Fermi gas). 

2. ELEMENTARY SOLUTIONS OF THE SHEAR WAVE 
EQUATION 

We shall start the analysis from Eq. (lb), because it turns out to be 
much simpler than Eq. (lc), providing a good starting point for a brief sur- 
vey of the method. 
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The Laplace-transformed equation (lb) takes the form 

~W 3~+~ 
(~+ 1)~+u-&-x =~o ~ (1-u '~) ~(x,~,~')du' (3) 

In deriving Eq. (3), it has been assumed, without loss of generality, that 
W(x, O, l~) vanishes. Solutions of Eq. (3) are now sought in the form 

l~(x , / l )  = exp[ - (s + 1) x/v] ~bs(v I # ) (4) 

Inserting this expression into Eq. (3), we obtain the following equation for 
the unknown {b~.(vl#): 

_ _  3~+' S-~-lv (V--/2)~s(V]/l)=4.] 1 (]-[~t2)~s(Vl#*)d]lt (5) 

Multiplying Eq. (5) by one and /~, respectively, and integrating the 
resulting equations provides two linear relationships for the moments of ~bs, 
by means of which Eq. (5) can be written as follows: 

3 v(1-v 2) f+~ 
(v-~)@~(vli~)=22(s+~-3v2 -1 ~s(1)lff')d]l' (6) 

for any finite value of v. If ~bs is chosen to have 

we obtain 

f + '  ~bs(v [#)d/~ = 1 (7) -1 

3 v ( 1 - v  ~) 
(v - l i )  ~s(Vl  #) - 2 2(s + 1 ) - 3v 2 (8) 

In solving Eq. (8), we have different answers, depending on whether or not 
v belongs to the interval [ -1 ,  1 ]. When v is not an element of the interval, 
{b s is the ordinary function 

3 v(1 - v 2) 1 
~bs(v I/1) = 2 2(s + 1 ) - 3v 2 v - # (9) 

In Eq. (9), v and s are not independent. It is easily seen that, due to the 
normalization condition (7), they are related by the following relation: 

~(s, v) 
t2(s, v ) - 2 ( s +  1)-- 3v 2 = 0  (10) 



where 
co(s, v) = 2(s + 1 ) - 3v 2 - 3v( 1 - v 2) arc tanh(1/v)  (11) 

Ires 

q 

It  can be easily shown that  lim~ ~ ~ co(s, v) = 2s; therefore, f2(s, v) vanishes 
for any s fixed when v goes to infinity and when s and v are such that  
co(s, v ) = 0 .  The eigenfunction corresponding to v = oe does not  satisfy 
Eq. (5) in general; hence, it will not  be considered. For  any s fixed, the 
function co(s, v) is an analytic function in the complex plane of the variable 
v cut along the interval [ - 1 ,  1]. When  v belongs to the cut, Eq. (10) is 
satisfied by those values of  s lying on the hear t -shaped curve F shown in 
Fig. 1 and given by the equat ions 

3 y2 ~ 1 -- V 1 (12a) R e ( s - + ) = ~  + v(1--v2) lOgl+ v 

3 
I m ( s •  = -T ~ r o y ( 1 - v : )  (12b) 

the plus or minus sign applying when v tends to the cut from the upper  or 
lower half-plane, respectively. The closed curve divides the complex plane 

-1 
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R e s  

Fig. I. The locus of complex s values that satisfy e) +- (s, v)= 0. 
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of the variable s into two regions: R 1, the region enclosed by F, and 
R o = C \ R  l . The number N of zeros of the equation 

co(s, v ) = 0  (13) 

for s fixed can be established by using the argument principle: 

lim ~c d v d  l~ (14) 
R ~ o o  = C R + C ~  
e ~ O  

where CR and C~, are the contours shown in Fig. 2. Since co(s, v) tends to a 
constant when v goes to infinity, the contribution of CR vanishes when R 
tends to infinity; therefore we have 

l im~ d l o g c o d v = 2 M X  (lS) 
c ~ o ce dv 

The function co(s, v) is continuous and bounded in the vicinity of the points 
v = +1; therefore, when ~ tends to zero the contribution of the contours C~ 
and C3 vanishes as well and we obtain 

2rci -ff-vlogco+(s, v)dv - j-vlogco-(s, v)dv (16) 

Fig. 2. 

R 

Contour integration for the principle of the argument: C~ = C1 + C2 + C3 + C4. 
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and finally 

1 [ co+(s, 1) co-(s, 1) ] (17) 
N = ~ - ~  i logco ( s , - 1 ) - l ~  

It is evident from Eq. (18) that N is an even number, since we have 

co+(s, - v ) = c o  (s, v) (18) 

Hence 

1 co+(s, 1) 
N = . - - l o g - -  (19) 

l~ co-(s, 1) 

This result will be useful later, but N will not be evaluated directly from 
Eq. (19). As shown by Eq. (16), we have 

N = ~-~ Acu t arg co(s, v) (20) 

When v belongs to the cut, co(s, v) can be expressed as 

co(s, v ) = s -  g(v) (21) 

where g(v) belongs to F. Accordingly, the value of arg co(s, v) is given by 
the angle formed by the vector s-~(v) with the x axis. When v moves 
around the cut, g(v) moves counterclockwise along the curve and it is very 
simple to see that when s belongs to R 1 then Acu t a rg(s -g)=4r~ .  In this 
case Eq. (13) admits two opposite solutions, Vo(S) and -Vo(S ). When s does 
not belong to the region surrounded by the curve, the variation of the 
argument of s-2(v) vanishes; therefore, Eq. (13) has no solutions in this 
case. The solution of Eq. (8) is no longer an ordinary function if v belongs 
to the interval [ - l ,  1], but it has to be interpreted as a distribution: 

3 Y(1--V 2 ) p __..~1 (22) 
2 2 ( s +  1 ) - 3 v  2 v - #  

the function 2 s has to be determined from the normalization condition (7). 
Straightforward calculation shows that 

,L(v)= [O+(s, v)+O (s, v)]/2 (23) 

where s + and s are the limit values of the sectionally analytic function 
s when v tends to the cut from the upper or lower half-plane, respectively. 
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Because of its importance in applications, the proof of the half-space 
completeness of the eigenfunctions ~b, and ~b+. will now be given, following 
the standard method37'8) Let f (# )  be a complex function of the real 
variable # , with # e  [0, 1]. It is assumed that f belongs to the set of 
functions that are H61der continuous in the extended sense on the interval 
[0, 1 ]. It will be shown that f ( # )  can be expressed as 

if s s Ro, and 
;o f ( # ) =  A(v)r (24) 

f(#)=a(vo)O+.(Vol#)+ A(v)~,(vr#)dv (25) 

i f s e R l .  
As is well known, the proof is by construction. Inserting expression 

(22) into Eq. (24), we obtain the following singular integral equation of the 
Cauchy type(12~: 

1 f' Q+(s, v)- f2-(s ,  v) A(v) 
f(#)=2+(#)A(#)+-:--P - -  dv (26) 

t~ J0 2 v - #  

A sectionally analytic function F(z) is now defined such that 

1 f~f2+(s,v)-(2 ( s , v ) A ( v )  

F(z) = ~ i  2 v - z - -  dv (27) 

and taking into account the Plemelj formulas 

O+(s, v)- f2-(s ,  v) 
F + (/2) - F (#) = 2 A(#) (28a) 

F + ( # ) + F + ( # ) = I P ~  1g2+(s'v)-s (s'v) A(V~) dv (288) 
z~ Jo 2 v - #  

we find that the singular integral equation (26) is reduced to the 
inhomogeneous Hilbert problem, 

1 
(2 + (s, #) F + (#) - (2 (s, # )F  = ~ [O + (s, #) - f2- (s, #)] f (# )  (29) 

The function F(z), whose limit values F + and F satisfy Eq. (29), can be 
expressed as 

1 f~ 1 (2+(s, v ) - Q - ( s ,  v)f(v) dv (30) 
F(z)= X(z) 2-~i~i 2 f2-(s, v) X-(v)  v-~z 
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where X(z) is a bounded, analytic function in the complex plane cut along 
the interval [0, 1]; furthermore, X(z) is a solution of the homogeneous 
Hilbert problem, 

Q + X + - ( 2  X = 0  (31) 

X(z) can be shown to be always bounded in the vicinity of z = 0 and to 
behave as ( 1 - z )  m/2 in the vicinity of z=  1. Accordingly, we must dis- 
tinguish the following two cases: 

1. When s belongs to Ro, X(z) takes the form 

++,  ) 
X(z)=Xo(z )=exp - ~  l o g - - - - d v  (32) 

CO / ~ - - Z  

Taking into account Eqs. (28a) and (30), one finds the solution of the 
integral equation (26) to be 

t fa+(s, ~) + t?-(s, 
A(#) =~ f2+(s, i~) f2-(s, #~) f(u) 

1X~ (2+(s ' v ) - f 2 - ( s ' v ) f ( v )  dv (33) 
2 f2+(s, #) ~(-}7 v) 7Xo- {~, v ~ v - #  

This expression can be simplified if use is made of the following identities: 

1 .= 1 ~ (  1 1 )) dr_ (34a) 
x0(z) 1+ 5 i xS(v)  ro-(V v - z  

Yo(z) X0(-z)  co(s, z) = 2s (34b) 

1 - 1 +  1 1 fo [co+(s,v)-co (s,v)]Xo(V)d u (34c) 
Xo( ) , 

(v,#~ [ - 1 , 0 ] ) .  The proof of identities (34) is standard. (7) It is worth 
noticing that the third identity is actually a nonsingular integral equation 
by means of which the values of Xo(z ) in the interval [ - 1 ,  0] (and hence 
in the whole complex plane) can be calculated. Using Eq. (34b) to 
eliminate X0 from Eq. (33), we obtain the following expression for the 
solution of Eq. (26): 

A(/~) - 2(s + 1 ) -  3 v 2 2  --co+col [(co+ +co ) f(p~) 

1 ~lr f,i (co+ -co )X~ I (35) 
Xo( - ~t ) v - # 
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2. When s belongs to R1 the function Xo(z) is no longer bounded in 
the vicinity of z = 1 and the proper function is 

X l ( z ) = ( 1 - z ) e x p  - ~  log - - d r  (36) 
CO V - - Z  

In this case, however, the function F(z) will not have the correct behavior 
at infinity unless the following condition holds: 

~l CO+ _CO- 
Jo -~---)~ f(v)dv=O (37) 

This is accomplished by setting 

f ( # )  = g(#) - a(vo) r 1#) (38) 

where a(vo) is a coefficient to be determined, v0 is the eigenvalue of the dis- 
crete spectrum saisfying Eq. (14) and such that R e [ ( s + l ) / v o ] > O  , and 
r #) is the associated eigenfunction. The solution of Eq. (26) can now 
be written as 

1~9 + + ~ 9  1 X i- 1 ~ 1 ( s  1 
A ( # ) - 2  f2 +(2- f (#)  2(2+i~c o ~ - ~ =  v - #  dv (39) 

Since co(s, z) has two roots, the identities have to be modified accordingly: 

f 0 (  1 1 ) 1 dv (40a) 1 _ 1 i X ~- (v)  v - z  
Xi(z ) 27ri ((v) X 

X,(z) X i ( -  z) co(s, z) 
- 2s (40b) 

V 2 __ Z 2 

l 1 l fO ( c o + _ c o - ) X l ( V ) d v  ' Xl(#)-2xi2s ,-(Vo-V~-((v+#) # , v e [ - 1 , 0 ]  (40c) 

In complete analogy with the pevious case, Eq. (40b) can be used to 
eliminate 35. from Eq. (39) and by means of partial fraction decomposit ion 
the following expression is obtained: 

A(#)_ 2(s+ 1)-3#~ 1 { 
2 co+co (co+ + c o - ) f ( # )  

1 [/,~ fj ((2)+--O3)351(--12 ) g(v) d v 
-~ X , ( - # )  v - #  

_1 jto (co + - c o -  ) 351( -v )  g(V) dv]  . . . .  -t Xl(--#)a(v~ 
17~ V -- V 0 

- -  [I(Vo) -- I ( # ) ] ~  

( 4 1 )  
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where 

I(#) = l  f~ (~ + - ~ -  ) X l ( -  V) ~s(V~ ] V) dv (42a) 
v - p  

I(vo)= l fs  (~176176 (42b) 
V - - V  o 

The coefficient a(vo) is to be evaluated from condition (38), which, taking 
into account the identity (32a), can be written as follows: 

fs + - r o - ) [ g ( v ) - a ( v o )  ~ ( V o [ V ) ] X l ( - v )  
v~_v  2 dv = 0 (43) 

Since 
3 Vo(1-v~) 1 

~.~(VolV):~ 2 ( s + l ) - 3 v ~  Vo- v 

we obtain 

3 Vo(1-v8) a(vo)~(~o+-o~ )Xl(-V) 
2 2 ~ +  1)--3v 2 v -(7~---~-)(~o---v) dv 

[f~ fO ((L) § --(~))~71(--V ) g(v)dv] = . . . . . .  1 (09+-~o ) X l ( - v ) g ( v ) d  v 
2Vo v + Vo v - Vo 

(44) 

The integral on the left-hand side of Eq. (44) is easily evaluated, since 

f~ (~+-o )x~(-v) 
(v  2 - v2 ) ( ] )o  - v )  d v  

= - 2 s  )(? v -  Vo Xl(Vo) 

The integrals I(/0 and I(vo) are also easily calculated, taking into account 
identities (40a) and (40b), the second Plemelj formula for the sectionally 
analytic function 1/Xl(Z), and the expansion of 1/Xl(z) for large z, to 
evaluate moments of the density (1/X~- - 1 / X ~ -  ): 

3 /~ -1~  2 2 v ~  I2s-t 1 ((D + -t-O.) !_~1(--~) ] (46a) 
I ( # ) -  2 2 p T  ~1--_,v o 2 Vo-/~ J 

3 SVo(1-v~) ( l f j  co + ) 
I(vo) - 2 2 ~  ~- ] ] - -  ~v 2 log co- dv - 2vo (46b) 
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3. THE PROPAGATION EQUATION FOR SOUND WAVES 

The analysis of the half-space problem for the transport equation (lc) 
will now be given. As is to be expected, the calculations needed to obtain 
the coefficient of the eigenfunction expansion are considerably more 
involved. 

The Laplace-transformed equation (lc) takes the form 

; 3 f+~g'Z(x,s,t~')dl~' (47) 82 1 +12(x,s,#,  ) d / d + ~ #  1 (S-I- 1 )2-F ]2 ~X ~- 5 1 

Equation (47) strongly resembles the steady neutron transport equation 
with linearly anisotropic scattering studied by Zelazny et al. (13) Separating 
variables as before, we obtain the following equation: 

I f  +l 3 f+~ s+ l(v-l~)~~(vlkt)=-21 1 - - v  ~b,(vl#')d#'+~/~ #'~,(vll~')dl~' (48) 

Integrating Eq. (48) with respect to /z gives 

+1  

f+llz~b~(v/#)dg ~ f ~ (J,(Vll~')dtt' (49) 

and substituting the above expression into Eq. (48), one obtains 

1 v ( 1  3 v s ) f  +1 
(,s(V I ~') d~' (50) ( v - t z ) G ( v l ~ ) = 2 s +  1 + s ~ - i  -# -1 

Choosing normalized eigenfunctions ~s, we find for the solution of Eq. (50) 

1 v ( 3v28) I 3 v2s (51) 
~b~(vl/~)-2(s+l) l + s - - ~ / v _ / ~  2 ( s + 1 )  2 

when vr I - l ,  1], and 

f2 + - (2 1 1 3 sv 2 
P - -  - -  (52)  (J"(vl#)=2~(v)g)(v-lt)+ 2 iTzv-/~ 2(s+  1) 2 

when v~ [ - 1 ,  1]. 
Let us consider first the eigenfunction of the discrete spectrum given 

by Eq. (51). The normalization condition implies that s and v are related 
by the following relationship: 

3v2s v ( l + ~ ) a r c t a n h ( ! ) = 0  (53) ~2(s' v)= l + (s + l )~ s +~ 
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when v tends to the cut, the corresponding values of s satisfying Eq. (53) lie 
on the curve shown in Fig. 3 and given by the equation 

where 
s 2 + bs + c = 0 (54) 

c = l + ~  _+i~+log 

b =  1 + (1 + 3v2)c 

(55a) 

(55b) 

The curve divides the complex plane of the variable s into the regions R0, 
R1, and R2. Following the same argument developed for the shear wave 
equation, it is easily shown that if s belongs to the outermost region R o, 
Eq. (53) does not admit any solution; if s belongs to Rl,  then Eq. (53) 
admits two opposite solutions Vo and -v0 ,  and four solutions v0, vl, -Vo, 
and -Vl  when s belongs to the innermost region R 2. 

The half-space completeness property of the set of eigenfunctions given 
by Eqs. (51) and (52) will now be estabilished, considering first the case in 
which s ~ R 0 : Starting from 

f ( t~)  = A(v)  ~',(v I/~) dv (56) 

Im s I R, 

1 

/ 

R I 

Re s 

k 

Fig. 3. The locus of complex s values that satisfy ~ +(s, v )=  0. Region R z is magnified. 
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and substituting the expression given by Eq. (2) into Eq. (56), we obtain 
the following singular integral equation: 

f(/~) = 2+(#) A(#)+ 1 f] a + - a -  A(v) 3s Io z~ 2 v~--~dV-(s+ l)2 v2A(v)dv (57) 

Equation (57) differs from the corresponding equation of Section 2 because 
of the last integral on the right-hand side. If we set 

3s v2A(v)dv (58a) k+- (s+ 1) -----~ 

g(g) = f(#) + ks (58b) 

Eq. (57) is brought into the form 

g(iQ=),,.(l.t)A(~)+L I)(tO+-Q )A(v) I _ _  dv (59) 
i~Jo 2 v- /~ 

and solved leaving the constants k+, unspecified. After the solution of 
Eq. (58) has been found, k+ is determined from definition (58a). As shown 
in the previous section, the solution of Eq. (59) can be put into the form 

1 [2,.(/.t) g(#) 1 1 f ~ l ( Q + - Q - ) X o ( - v ) g ( V ) d v ]  
A(~)-~9+~ Xo(-~) i~ 2 v - ~  

(6O) 

The function Xo(z) is defined as follows: 

Xo(z )=exp - 

The following identities hold for Xo: 

t2 + __1 dv ~ 
log Q~ v - z ) (61 ) 

, +• , ) 1  Xo(z) 12~zi X~(v) Xo-- ~ ~L--~-z dv (62a) (+)2 
Xo(z) Xo(-Z) t2(s, z) = ~ (62b) 

X0(/~) 1 1  = + ( s +  1~ 2\___~j ~ 1  fo, (t'2+-t2-)X~ (62c) 

The value of the constant k+ is now determined by multiplying Eq. (60) by 
3s/(s + 1 )2#2 and integrating the resulting expression with respect to/~. 
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When s ~  R 1 the coefficient A(#) can be written as 

1 ( 
A(#) = f2 +~-0--- ~2,(#) g(#) ( 

1 t l  fs l(Q+-f2-)Xl(-v)g(v) 
XI(--~) ~ 2 "9--/~ 

iTr o 2 v-v  o 

dv 

(63) 

where 

XI(z )=(1-z)exp - l o g - ~ v _ z d V  

In deriving Eq. (63) the identities 

1 

x,(~) 

1 -  1 1( 1 1 ) d r  
XI(Z ) ~/" i) X1-(l'r ) V ~ Z  X~-(v) (64a) 

xi(z)x,(-z)n(s,z) ( s ) 
(Vo2_Z2) - ~ (64b) 

I ( , + l )  2 o a -  x , ( . )  
~i  \--~--] f ((2+- ) dr, / z , v ~ [ - 1 , 0 ]  (64c) 

_, ( ~ -  ~2)(v + ~) 

have been taken into account as well as the auxiliary condition 

i~ ( n + - n  ) S l ( - v ) g ( v )  & =  o 
V2 __ y2 (65) 

which will be satisfied by adding an eigenfunction of the discrete spectrum 
to the expansion. Accordingly, we have so set 

g(~) =f(~)+k,-a(vo)~,(vol~) (66) 

Substituting this expression into Eq. (63), we obtain 

1 { 1 I1  s + - f 2 - ) X l ( - v  )f(v) dv 
A(#)=t2+-~- ~ 2,(#)g(tt) X~(_#)Li- ~ o 2 v- ,u  

1 fo 1( ( 2 + - ( 2 ) X l ( - v ) f ( V ) d v  ] 
i s  2 v - Vo 

a(Vo) k, } 
X l ( - ~ )  [I4(vo) - I3(#)] q X1 ( _ /~  EL(t0 - I2(vo)] (67) 
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where I~, I2, I3, and/4 are given by the following expressions: 

I1(~)= ~ ~ logb---du-# +;t~.(~,)x,(-~) (68a) 

I2(v~ \2~i f0 log (68b) 

(68c) 

I 4 ( v ~ 1 7 6  * s~-i-) ~,s--~-) X--~o)] (68d) 

Multiplying Eq.(67) by 3Sl~2/(s+l) 2 and integrating gives a linear 
equation to determine the unknowns k, and a; the second equation is 
obtained from the condition (65): 

, f ]  ( n + - n ) X l ( - v ) f ( v )  
a(vo) I ] ( v o ) - k , I 2 ( v o ) =  ~ v~-v--- 5 dv (69) 

where 

(s)2 
I'2(Vo) = 2rci 

Ii(vo)= - ~  VoI2(vo) + 1 + 3 
s + l o s + l Xl(Vo) 

When s ~ R2 the dispersion function has four zeros; hence, we have 

X2(z ) = ( 1 - z  2) exp - ~  l o g - -  + 1 dv" ~ (70) ] g ? - v - z  

The function X2(z) is such that 

X2(zS=Z~z--i o X f ( v )  X v - z  

~ : 2 ( z ) x 2 I - z ) ~ ( z )  ( , )  2 
(,,~ - z2)iv~ - z 2) = T U i  

x2(u)  (v~ - v2)(v~ - v 2) v + 

(71a) 

(71b) 

- - d v  (71c) 
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The coefficient A(#) is now given by the following expression: 

1 {,~s(~) g(u) 
A(kt) -- f2 +(2 

1 [Vo+V~, (f2 + f2- X2(-v)  - / gfvld  
Y2(-#) z~ ~o v - Vo 

1)0 -~- Y 1 1 f~" ( ~  + - i f 2  ) zl(-2( -- Y) g(v) 
2 (v~ v-v1 

l f o  ((2 + - s )Xa(-v)g(V)dvl} (72) + 7  
trr v - / ~  

where the function 

g0z) = f ( f f )  + k , -  a(vo) Cs(v [ #) - a(vl ) (),(v, It) (73) 

is such that the two conditions 

f /  (f2+--(2 )X2(-v)g(v) 
( v ~  - v = ) ( v ~  - v 2 )  

dv (74a) 

f~ (f2 +-(2 )X2(-v)vg(v) 
C;o~-- ~-2)~1~- 77 dv=o (74b) 

are to be satisfied. In deriving Eq. (71), the conditions (74) have been taken 
into account as well as the identity (71b). The integrals appearing on the 
right-hand side of Eq. (71) have to be calculated by inserting the expression 
for g(/~) given by Eq. (73) and taking into account that 

;2V.  7 -- -- ~ (v2TI--VJ T 2 - T 3 )  

i v - - v j 7 - V ) d v = 2  ~ 1 X2(vs) j ,  j = 0 , 1 ;  t = 1 , 0  

~i~(o+-n )x2(-v). / ,  ,: (v v-~v--~l) av=t~-[)  [T2+(v~ 

1 [ '  (~+-~-)X=(-V)dv 
- -  7 ire Oo v -- # 

= ~ [r~+J2+0'~-vg-Vbrx]+2;-,(u) x2(-~) 
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1 Io ( ~ + - f a  ) x2 ( -v )  ~7 ?-v77(77 ~ dv 

= s - ~  (T2-2 /~ )+#  

r~= v' ~((v)  

22,.(u) X 2 ( - ~ )  2~s(~) f i r2 ( -~ )  

v~-~ ~ ( ~ -  u~)(Vo~- u ~ ) 

1 1 log ~ dv 
Xz(V) dv = i-7 

X((v) dv = - u log b=- dv ~4 

Inserting the expression (72) into Eqs. (73), we obtain two linear equations 
containing k,, a o, and a t as unknowns: 

2 

2 
m =  1 

2 
-12k~ + ~' 

m=l 

1 fl (s - f2  )X2( -v ) f (v )  dv (75a) 
atVm)Ilm =--ITZ ( V0-~-- V 2-)-~12 7 V 2 ) 

1 f f  (['2 + --~'-2 ) X 2 ( - - v ) P f ( v  ) 
a(Vm)I2m=TzrC (--~o--_v-~)(--~-725 dv (75b) 

where 

1,= (v~7~(;,~--zT)- dv=o 

11m__L C 1 (.(-2 + - ~  )X2(--v)~Ss(VmlV ) 
-i~Jo -(~-- v~v~ ~ dv 

~m ( S 
= - s §  s - ~ _  -- 1 §  X2(Vm) 

12 = ~ f~ (O+ .~ ~ )fl['2( __ V)I ) , 2 

1 ~,, ( ~ + - ~ - ) x ~ ( - v ) v G ( v ~ l v )  
I2m ~- ig 0 (v~ -- Y2)(v2 - g 2) dv 

2 ( -~ , 2 
_ 3 , < , / t ~ , ~  1 3v],s 1 v m 1 § 

( s + l )  2 2 s + l  s + l ] \ s + l ]  Xz(vm) 

The third equation is obtained by multiplying Eq. (72) by 3S112/(S § 1)2 and 
integrating. 

822/46/1-2-18 
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4. C O N C L U S I O N S  

The equations of propagat ion  of shear and sound waves in an 
ultrarelativistic gas have been studied by the method  of elementary 
solutions. The nature of the discrete spectrum associated to each equat ion 
has been investigated and the half-space expansion coefficient calculated. It 
is worth noticing that  in the case of  the propagat ion  equat ion for sound 
waves the calculation of the expansion coefficient requires a considerable 
amount  of numerical evaluation because of some twofold integrals appear-  
ing in the coefficients of the linear systems from which k, is evaluated. 
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